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Global change drivers, in particular climate change, exotic

species introduction, and habitat alteration, affect insect

pollinators in numerous ways. In response, insect pollinators

show shifts in range and phenology, interactions with plants

and other taxa are altered, and in some cases pollination

services have diminished. Recent studies show some

pollinators are tracking climate change by moving latitudinally

and elevationally, while others are not. Shifts in insect pollinator

phenology generally keep pace with advances in flowering,

although there are exceptions. Recent data demonstrate

competition between exotic and native bees, along with rapid

positive effects of exotic plant removal on pollinator richness.

Genetic analyses tie bee fitness to habitat quality. Across

drivers, novel communities are a common outcome that

deserves more study.
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Introduction
Global change is affecting insect pollinators in profound

ways. Climate change, exotic species introduction, and

habitat loss are affecting all major aspects of the biology of

insects that pollinate plants in both natural and agricul-

tural communities, altering their distribution, phenology,

abundance, physiology, and morphology [1–5]. The con-

sequences of these effects are complex, perturbing plant–

pollinator interactions in subtle but important ways and in

some cases resulting in local extinction [2]. Despite the

complexity, understanding these consequences is critical:

just as the vast majority of flowering plants depend on

insects for pollination [6], we rely in large part on insects

to pollinate our crops, a valuable ecosystem service [7].
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Among the many insect taxa that serve as pollinators,

bees, flies, butterflies, and moths have received the most

study in the context of global change. Within these taxa,

bees are key pollinators of both crop plants and wild

plants [8], and studies on bees have dominated the

literature on plant–pollinator interactions under global

change. Because bees rely heavily on floral resources both

for their own sustenance and to provision their offspring,

their fitness is strongly determined not only by the direct

effects of global change but also by the influence of global

change drivers on flowering plants.

Here, I consider the effects of several global change

drivers on insect pollinators, with an emphasis on what

we know about the effects on native bees. First, I discuss

how climate change is affecting insect pollinators, as this

is a topic of active research that illustrates a suite of

responses. Second, I review the effects of exotic species,

both insect and plant taxa, on insect pollinators. Third, I

consider another global change factor, habitat alteration

and loss, and its effects on insect pollinators. Throughout,

I consider both direct effects on pollinators and effects

that are mediated via plants and other interspecific inter-

actions. Given biotic pollination is by definition a multi-

trophic interaction, greater consideration of how global

change alters species interactions is needed to improve

conservation and management of pollination services.

Effects of climate change
The responses of insect pollinators to climate change

have been relatively well-studied, although much

remains to be resolved. For the most part, experimental

studies of climate change factors on insect pollinators

have focused on temperature [9–12], an important deter-

minant of developmental rate [13]. Manipulations of

other factors, such as carbon dioxide [14] or precipitation

[15], have been applied to plants with subsequent mea-

sures of pollinator responses to altered floral traits. Com-

plementing experimental approaches are long-term data,

historical observations, and museum specimen records

that can be correlated with ambient temperatures and

other climate variables to describe insect responses [1,16].

Among the most striking consequences of climate change

have been shifts in the spatial distributions of insect

pollinators. Given the rapid life cycles and high mobility

of most insect pollinators, are they able to keep pace with

anthropogenic climate change by tracking environmental

conditions over space? Evidence is mixed. On the one

hand, Kerr et al. [4��] discovered bumble bees (Bombus
www.sciencedirect.com
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spp.) across two continents have not tracked warming

temperatures, as evidenced by a failure to expand their

northern latitudinal range limits. On the other hand,

several studies have shown that bumble bees have moved

upward in elevation in montane ecosystems [4��,17,18],
and some butterflies have shifted up in altitude [19]. Both

a nymphalid butterfly (Polygonia c-album) and a lycaenid

butterfly (Aricia agestis) in Britain have greatly expanded

their ranges northward in association with warming

[20,21]. A key question that has been not been considered

for most taxa is how these spatial shifts affect interactions

with floral resources and thereby influence both pollinator

fitness and patterns of pollen flow and reproductive

output of plants. Differential shifts among taxa will

almost certainly translate into modified communities,

especially as perennial plants are likely to lag behind

their pollinators. In addition, it remains largely unknown

whether traits or phylogenetic relationships can explain

variable spatial responses among taxa (but see [4��,22]).
To understand constraints on the distributions of insect

pollinator populations and predict how distributions will

be affected by climate change directly and via effects on

host plants and other species with which pollinators

interact, species distribution models can be a useful tool

[23,24].

Shifts in the phenologies of insect pollinators are another

conspicuous signal of climate change. Multiple species of

bees have significantly advanced their phenologies [1], as

have many butterflies and moths [25,26]. Among lepi-

dopterans, variable responses can be partially explained

by traits such as diet breadth [26]. In contrast to spatial

shifts, the consequences of climate change-induced tem-

poral shifts for plant–pollinator interactions have received

much attention. Community-level analyses indicate bees

and the plants they pollinate are advancing at similar rates

[1], whereas butterflies and their nectar sources show

different sensitivities to temperature [27�]. In general,

experimental studies suggest phenological mismatches

are unlikely to lead to complete decoupling of interac-

tions among insect pollinators and plants [28,29]. In part

this outcome is not surprising: plant–pollinator interac-

tions tend to be generalized [30] and nested, with spe-

cialists interacting with generalists [31], and high rates of

interaction turnover [32]. However, there are examples of

specialized plant–bee interactions that are likely becom-

ing disrupted as phenologies shift [33,34]. Even subtle

phenological mismatches are likely to have consequences

for interaction strengths, fitness, and the evolution of life

histories [35]. Whereas the consequences of mismatches

for plants have been commonly measured in terms of seed

production [29,36], the consequences for pollinators have

gone unquantified [37]. Also in contrast to the situation

for insect pollinator phenology, where few studies have

linked responses to traits or phylogenies, flowering phe-

nology responses to climate change have been associated

with traits such as flowering season, life history, and
www.sciencedirect.com 
pollination mode [38,39] and exhibit phylogenetic signal

across continents [40]. Together, these gaps in under-

standing point to a need for more studies at the commu-

nity level; a community approach should simultaneously

create opportunities for trait-based analyses and enable

the consequences of phenological mismatches from the

pollinator perspective to be quantified.

Other aspects of climate change that have been demon-

strated to affect insect pollinators via flowering plants

include elevated carbon dioxide and decreased precipi-

tation. Plants grown under elevated carbon dioxide can

have altered floral traits, such as nectar composition [14]

and pollen protein concentration [41]. In turn, these

altered traits can influence the fitness of insect pollinators;

Hoover et al. [14] found that Bombus terrestris workers

exhibited reduced longevity when fed synthetic nectar

mimicking that of flowers produced under elevated car-

bon dioxide, and Ziska et al. [41] posit that reduced

protein in goldenrod pollen could negatively affect bees.

Experimental drought had variable effects on floral vola-

tiles but consistently reduced flower size and floral display

across four species, resulting in different communities of

bees, flies, and butterflies visiting the flowers in the

drought treatment [15]. In general, a tight link between

the direct effects of climate change on floral resources and

the consequent effects on insect pollinators has yet to be

made. In part, this is because it is difficult to isolate the

effects of complex floral responses on mobile insects,

particularly in the field and at the population and com-

munity levels. As molecular genetic techniques and tech-

nologies that allow automated identification of individual

bees, for example as they pass over radio frequency

identification readers, are refined, larger-scale field-based

studies of pollinator fitness and foraging responses should

become more feasible.

Effects of exotic species
Human-aided transport and introduction of exotic species

is a major driver of global change, reshaping fundamental

ecological relationships [42]. Focusing in on exotic insect

pollinators, we know the most about the impacts of non-

native bees on native bees [43]. Non-native bees include

long-established domesticated honey bees (Apis melli-
fera), more recently-introduced commercial pollinators,

such as Bombus terrestris [44], and accidental introductions

of species such as Hylaeus communis [45]. Alien pollinators

can compete with native pollinators for resources, poten-

tially reducing their fitness, altering patterns of pollen

flow, and ultimately changing community structure to the

disruption of ecosystem services [46,47]. Not surprisingly,

the best-studied interactions between exotic and native

bees involve honey bees. Building on prior experimental

work that demonstrated competition for floral resources

between honey bees and a native bumble bee (B. occi-
dentalis; [48]), Thomson [49��] used a 15-year-long data

set to show a negative relationship between feral A.
Current Opinion in Insect Science 2017, 23:22–27
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mellifera densities and Bombus spp. densities. Similarly,

after honey bees invaded a tropical reserve, solitary bees

were observed to visit different plant species because of

competition, but declines in the native bees were not

detected [50]. Thus, the effects of exotic insect pollina-

tors on native pollinators likely depend on factors that

modify the strength of competition, such as niche overlap

and flexibility, as well as interacting effects of other

stressors, such as drought, that modulate floral resource

availability.

Turning briefly to non-native plants, several studies have

investigated how exotic plants influence plant–pollinator

interactions [46,51–53]. Recently, a large experiment by

Kaiser-Bunbury et al. [54��] showed exotic plant removal

resulted in about 20% more pollinator species in restored

sites, with more generalized plant–pollinator networks

and higher fruit set of common species. These results

suggest removal of non-native species can rapidly

enhance pollinator richness but may, as the authors note,

hinge on nearby populations of pollinators to colonize

restored sites [54��]. More broadly, no real consensus on

the effects of exotic plants on insect pollinators has

emerged, with both positive and negative effects reported

[46,51]. Moving forward, greater integration of the study

of exotic species with the study of phenological and range

shifts, which can similarly modify interaction strengths

and create novel communities, would be productive.

Effects of habitat alteration and loss
Habitat alteration and loss is widely recognized as a

contributor to declines of insect pollinators [55]. Changes

in land use are associated with changes in pollinator

community composition and richness; in particular, con-

version to arable land is associated with declines in bee

and wasp species richness over 80 years in Britain [56].

Agricultural intensification carries its own suite of effects

on insect pollinators, including the direct effects of pes-

ticides such as neonicotinoids, which can have multiple

debilitating effects on bees [57–59], weakening pollina-

tion services [60]. Using genetic analyses, a recent study

by Carvell et al. [61�] showed that lineage survival of three

bumble bee species increased as a function of nearby

high-quality foraging habitat, quantified as semi-natural

vegetation, spring floral resources for queens, and overall

flower cover in spring and summer. Bumble bee nesting

density also can be negatively related to the percent of

paved surface and positively related to the amount of

natural oak woodland-chaparral habitat [62].

Some traits serve as predictors of the severity of effects of

habitat alteration and loss on insect pollinators. Generally,

specialized pollinators are more sensitive to land use

impacts [63,64]. Within bees, a global analysis indicated

stronger negative effects of overall agricultural intensifi-

cation and isolation from natural habitat for species that

nest above ground, whereas species that nest below-
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ground were adversely affected by land tilling [65].

The abundance of social bees was also more negatively

affected by isolation than was the case for solitary bees

[65]. Some pollinators may be able to adjust their foraging

distances in response to landscape-scale variables, as seen

with bumble bees capable of foraging farther to find

patches of greater floral diversity in landscapes that are

relatively homogeneous [62]. Altogether, multiple studies

indicate that ecological intensification practices, such as

increasing floral resource availability and diversity across

landscapes, have positive effects on insect pollinator

persistence in the face of habitat alteration [66]. Never-

theless, with changing land use, pollinator behavior and

species composition are likely to change, modifying inter-

actions and pollination services.

Conclusions
As we become increasingly aware that species interactions

shape species distributions in time and space and modu-

late the direct effects of global change, considering insect

pollinators in a community context should be a priority.

For example, Forrest and Chisholm [67�] demonstrated

that warmer temperatures led simultaneously to higher

rates of activity and nest provisioning by a solitary bee

(Osmia iridis) and to increased rates of brood parasitism by

a wasp (Sapyga sp.). Thus, positive effects of warming are

likely to be negated by altered interaction frequencies

with a natural enemy [67�], a result that would not be

predicted in isolation of community context. Community-

level analyses also detect broader trends before pairwise

interactions are disrupted or individual species decline.

For example, a study of phenological overlap in

Greenland over 18 years points to disrupted plant–polli-

nator interactions as the flowering season shrinks, poten-

tially leaving pollinators without floral resources late in

the season [68].

Much progress has been made in understanding the

effects of individual global change drivers on insect

pollinators. Moving forward, further progress in under-

standing and mitigating anthropogenic disturbances

could be made by searching for common outcomes across

drivers. All three of the global change drivers highlighted

here are likely to result in novel interactions and commu-

nities. Climate change, for example, alters overlap among

species via spatial and temporal shifts, among other

mechanisms. Introduced exotic species interact with

native species in novel ways. And habitat alteration

and loss can result in novel species composition and cause

species to modify behavior, altering interactions. By tying

these common outcomes to resulting eco-evolutionary

dynamics, we can begin to anticipate how global change

will reshape insect pollinator communities and pollina-

tion services.
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of nest cell production increased with temperature and with floral
resource density, but because brood parasitism rate also increased with
temperature, reproductive output was not elevated under warmer tem-
peratures. This work illustrates the importance of top-down forces and
community context for predicting the effects of climate change on insect
pollinators.
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